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@ Often have many variables, but only a few are relevant, e.g.
finding subsets of genes responsible for a disease.

@ Can model this via sparsity.
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@ Often have many variables, but only a few are relevant, e.g.
finding subsets of genes responsible for a disease.

@ Can model this via sparsity.
@ Consider high-dimensional linear regression
Y =Xby+0Z, Z ~ Np(0,1,),

where X e R™P 5 € RP and o > 0.

@ We assume 6y is sp-sparse:

So=#{i:9;#=0}.

Interested in the case p > n and sy < p.
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Debiased inference

Y =Xy +0Z, Z ~ Np(0, 1),

@ Goal: statistical inference for a
of 0= (61,...,0,)7 eRP.
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Debiased inference

Y =Xy +0Z, Z ~ Np(0, 1),

@ Goal: statistical inference for a
of 0= (61,...,0,)7 eRP.
@ The LASSO

HLASSO argmin | Y - XHH% + |01
OcRP

is well-known to give biased inference for 6;.

@ Reason: it shrinks all coefficients to perform regularization.
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Debiased inference

Y=Xby+0Z, Z ~ Np(0,1,),

@ Can debias the LASSO:

A

§d _ pLASSO EMXT(Y _ X{LAS50)y,
n

@ Last term is estimate of bias.
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Debiased inference

Y=Xby+0Z, Z ~ Np(0,1,),

@ Can debias the LASSO:

A

§d _ pLASSO EMXT(Y _ X{LAS50)y,
n

@ Last term is estimate of bias.
o If M is sufficiently close to precision matrix of the covariates

and sp < \/n/(log p) then
09 ~? N(61,02/n)

e.g. Zhang & Zhang (JRSSB 2014), van de Geer et al. (AOS
2014), Javanmard & Montanari (AOS 2018).
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Debiased inference

Y=Xby+0Z, Z ~ Np(0,1,),

@ Can debias the LASSO:

A

§d _ pLASSO EMXT(Y _ X{LAS50)y,
n

@ Last term is estimate of bias.
o If M is sufficiently close to precision matrix of the covariates
and sp < \/n/(log p) then
0¢ ~? N(0y1,0°/n)
e.g. Zhang & Zhang (JRSSB 2014), van de Geer et al. (AOS
2014), Javanmard & Montanari (AOS 2018).
@ Can be used to construct confidence intervals
Pgo(eo,l € Jl(Oé)) >l-a- O(l).

@ Can we do thisin a way?
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Model selection priors

Y = X0 +0Z, Z ~ Na(0, 1)

@ For the Bayesian: natural to model sparsity via the prior I1.
@ Common priors:

e Model selection priors
e Shrinkage priors
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Model selection priors

Y = X0 +0Z, Z ~ Na(0, 1)

@ For the Bayesian: natural to model sparsity via the prior I1.
@ Common priors:

e Model selection priors
e Shrinkage priors

o Consider the prior:
0; ~™ wep + (1-w)do

for w e [0,1] and a density .
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Model selection priors

Y = X0 +0Z, Z ~ Na(0, 1)

@ For the Bayesian: natural to model sparsity via the prior I1.
@ Common priors:

e Model selection priors
e Shrinkage priors

o Consider the prior:
0; ~™ wep + (1-w)do

for w e [0,1] and a density .
e We take Laplace slab ¢(x) = %e"\‘x‘ and hyperprior

w ~ Beta(ap, bo)

to adapt to the unknown sparsity level sg.
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Model selection priors

Spike and slab: e.g.
0; ~id 0.3 x N(O?O—Earge) +0.7 x N(0, O—gmall)'

_— Spike
A Slab
&1 ———  Spike & slab
L T T T T T
-04 -0.2 0.0 0.2 0.4
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@ Recall: goal is to
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@ Recall: goal is to estimate single coordinate 0.

@ In high-dimensions the marginal posterior can pick up
regularization bias == bad UQ.

@ Similar issues occur with “plug-in" estimators, e.g. double
debiased machine learning methods (Chernozhukov et al.).
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@ A strong form of limit distribution is the (parametric)
Bernstein-von Mises theorem. If Yi,..., Y, ~ Py, then

L1
d -1
O|Y,..., Yow N(en,;/%)

as n — oo, with 9An an efficient estimator and /p, is the Fisher
information.
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@ A strong form of limit distribution is the (parametric)
Bernstein-von Mises theorem. If Yi,..., Y, ~ Py, then

L1
d -1
O|Y,..., Yow N(en,;/%)

as n — oo, with 9An an efficient estimator and /p, is the Fisher
information.

@ Says posterior is asymptotically optimal from a frequentist

perspective.

@ Bayesian are frequentist of
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@ A strong form of limit distribution is the (parametric)
Bernstein-von Mises theorem. If Y1,...,Y, ~iid Py, then

L1
d -1
O|Y,..., Yow N(en,;/%)

as n — oo, with 9An an efficient estimator and /p, is the Fisher
information.

@ Says posterior is asymptotically optimal from a frequentist
perspective.

@ Bayesian are frequentist of

@ For sparse priors, can get posterior normality for entire 6
under strong signal-to-noise conditions (Castillo et al. AOS
2015), e.g. strong model selection.
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o Let v; = X{" X;/n be the (rescaled) correlation.

@ Let 0 have a model selection (e.g. spike and slab) prior with
01 only slab.

Theorem (Castillo, van der Pas, Ray, van der Vaart & Vuursteen
(in preparation))

Kolyan Ray 9/28



o Let v; = X{" X;/n be the (rescaled) correlation.

@ Let 0 have a model selection (e.g. spike and slab) prior with
01 only slab.

Theorem (Castillo, van der Pas, Ray, van der Vaart & Vuursteen
(in preparation))

Let 0y € RP be sy-sparse. Assume that

@ maxoci<p |7l < v/ (log p)/n (not too much correlation).
e X satisfies a compatibility condition.

° sp = o(\/n/logp).
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o Let v; = X{" X;/n be the (rescaled) correlation.

@ Let 0 have a model selection (e.g. spike and slab) prior with
01 only slab.

Theorem (Castillo, van der Pas, Ray, van der Vaart & Vuursteen
(in preparation))

Let 0y € RP be sy-sparse. Assume that

@ maxoci<p |7l < v/ (log p)/n (not too much correlation).
e X satisfies a compatibility condition.

° sp = o(\/n/logp).

Then the satisfies

L(/n(61-6:)[Y) - N(0,1)

as n — oo, where 01 is an efficient estimator for 0.
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@ The condition
X/ X

n

max
2<i<p

flo
n
ensures there is not too much correlation between X; and X;.
@ Model selection priors satisfy a semiparametric BvM for 61

under significantly weaker conditions.
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The condition
X/ X
n

max
2<i<p

flo
n
ensures there is not too much correlation between X; and X;.
Model selection priors satisfy a semiparametric BvM for 6

under significantly weaker conditions.

Set
sov/log p
Vn
to be the large coordinates (easy to detect).
We allow large correlation between 6; and S, and need

(Xl_XSOBSO)TXJ' <c log p
"V n

n
where BASO is the least square estimator for X1 = Xs,fs, + €.

Sp = {i >1:100i 2

max
JeS§
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The condition
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where BASO is the least square estimator for X1 = Xs,fs, + €.

Sp = {i >1:100i 2

max
JeS§

Kolyan Ray 10/28



The condition
X/ X
n

max
2<i<p

<cy/ logp
n

ensures there is not too much correlation between X; and X;.

Model selection priors satisfy a semiparametric BvM for 6
under significantly weaker conditions.

Set
sov/log p
Vn
to be the large coordinates (easy to detect).
We allow large correlation between 6; and S, and need

(Xl_XSOBSO)TXJ' <c log p
"V n

n
where B, is the least square estimator for Xi = Xs, s, + €.
Suggests true Bayesian methods may already be quite good at
debiasing.

Sp = {i >1:100i 2

max
JeS§
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The condition
X/ X
n

max
2<i<p

flo
n
ensures there is not too much correlation between X; and X;.
Model selection priors satisfy a semiparametric BvM for 6

under significantly weaker conditions.

Set
sov/log p
Vn
to be the large coordinates (easy to detect).
We allow large correlation between 6; and S, and need

(Xl_XSOBSO)TXJ' <c log p
"V n

n
where B, is the least square estimator for Xi = Xs, s, + €.
Suggests true Bayesian methods may already be quite good at
debiasing.

Problem: posterior is expensive to compute.

Sp = {i >1:100i 2

max
JeS§
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Computation

@ Using Bayes formula:
[ e 31Y-X0l34n(p)

neBly) = .
o e TV an (o)
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Computation

@ Using Bayes formula:
[ e 31Y-X0l34n(p)
[ e IV X0 g (gy’

nesly) =

@ Problem: full posterior is expensive to compute since model
space has size O(2P).

e Standard MCMC methods are slow for p large (1000's).

@ Discrete structure & high-dimensional multi-modal posterior
= difficult mixing.
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Computation

@ Using Bayes formula:
[ e 31Y-X0l34n(p)
[ e IV X0 g (gy’

nes|y) =

Problem: full posterior is expensive to compute since model
space has size O(2P).

Standard MCMC methods are slow for p large (1000's).
Discrete structure & high-dimensional multi-modal posterior
= difficult mixing.

Alternative: in (VB), propose a family of
tractable distributions Q for 6.
Solve the following optimization problem:

x . ) _ q
Q" =argmin KL(QINCY)),  KL(dllp) fqlogp-

e.g. using gradient descent, coordinate descent,
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Variational Bayes

Complex sparse
distributions in RP

Factorizable Q(0)
Q*(0) o

Mn(g | D)
tioy,

@ Tradeoff: simple vs complex class <= speed vs accuracy.
@ Typically much faster than standard MCMC methods.
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Variational Bayes

e Common choice is mean-field (factorizable) distributions:
Q) =Q1(01)®---® Qp(b))

@ Underestimates posterior variance/uncertainty:

Exact Posterior

X2 Mean-field Approximation

& =

Figure: Figure 1 from Blei et al. (JASA 2017).
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Variational Bayes

e Common choice is mean-field (factorizable) distributions:
Q) =Q1(01)®---® Qp(b))

@ Underestimates posterior variance/uncertainty:

Exact Posterior

X2 Mean-field Approximation

X1

Figure: Figure 1 from Blei et al. (JASA 2017).

@ Cause: correlation in posterior.

@ One solution: use approximation that is ‘mean-field’ in a
transformed space that decorrelates
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Variational Bayes for sparsity

@ Want a family that preserves properties of spike and slab.
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Variational Bayes for sparsity

@ Want a family that preserves properties of spike and slab.

@ Pick mean-field (factorizable) variational family Q:
0; ~"™ YiN(pi, 07 ) + (1 = 7;)do,

pi€R, 02 >0 and ~; €[0,1].
@ Reduces posterior model size from O(2°) to O(p).

@ Mimic prior not posterior - breaks dependencies.
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Variational Bayes for sparsity

@ Want a family that preserves properties of spike and slab.

@ Pick mean-field (factorizable) variational family Q:
0; ~"™ YiN(pi, 07 ) + (1 = 7;)do,

pi€R, 02 >0 and ~; €[0,1].
@ Reduces posterior model size from O(2°) to O(p).
@ Mimic prior not posterior - breaks dependencies.

@ Can be computed numerically using coordinate descent
(non-convex optimization problem).
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o Consider Gaussian design matrices with correlation p:
Xi ~ Np(0,X) with

1 if j=k
ij={ J
P if j # k.

1) MF VB Proposed VB

Coverage Length Error | Coverage Length Error
0.00 0.92 0.40 0.01 0.96 0.40 0.01
0.25 0.92 0.39 0.02 0.94 0.45 0.01
0.50 0.39 0.02 0.97 0.59 0.01
0.90 0.05 0.39 0.73 0.97 1.43 0.01

e MF VB gets both bias and variance wrong.

e MF VB ignores correlation in credible interval lengths.
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o Let H= X1 X" /n denote the projection matrix onto span(Xi)
and v; = XlTX,-/n the covariate correlation.
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o Let H= X1 X" /n denote the projection matrix onto span(Xi)
and v; = XlTX,-/n the covariate correlation.

o Intuition: likelihood factorizes (~ ‘independence’):
(V) e o=31Y-X0[3
o e 3 IHY=X167 |3 7

where

01291+27i9i7 6—1:(027"'70,0)7_'

i>2
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o Let H= X1 X" /n denote the projection matrix onto span(Xi)
and v; = XlTX,-/n the covariate correlation.

o Intuition: likelihood factorizes (~ ‘independence’):
(V) e o=31Y-X0[3
o e 3 IHY=X167 |3

where

01291+27i9i7 6—1:(027"'70,0)7_'

i>2

o (07,0_1) less correlated compared to (01,0-1) under the

posterior.
o ldea: use a mean-field approximation for (67,62, ...,60,) not
(61,62,...,0,).

Kolyan Ray 16 /28



@ To speed up computation, we use the prior introduced by
Yang (EJS 2019) for this problem:

61 ~ g, 0_1 ~ model selection prior

independent, where g is a slab distribution.

@ True posterior still computationally expensive due to 6_; part.
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@ To speed up computation, we use the prior introduced by
Yang (EJS 2019) for this problem:

61 ~ g, 0_1 ~ model selection prior

independent, where g is a slab distribution.
@ True posterior still computationally expensive due to 6_; part.

@ We use a mean-field approximation for (67,6-1), not
(601,...,0p):

0; =" iN(ui,0?) + (1-7)do,  2<i<p

* ind
01~ q

@ By posterior factorization, the KL minimizing g is simply the
true posterior for 6.

Kolyan Ray 17 /28



)

Independent priors on (67,6-1) = independent posteriors on
(07,0-1).
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Independent priors on (67,6-1) = independent posteriors on
(01,6-1).
© Compute the true 1d posterior for 67 based on likelihood
HY |07 ~ No(X167, In).

@ Compute the based on
likelihood

(I - H) Y|9—1 ~ Nn((l - H)X_19_1, In)'
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Independent priors on (67,6-1) = independent posteriors on
(01,6-1).
© Compute the true 1d posterior for 67 based on likelihood
HY |07 ~ No(X167, In).
@ Compute the based on
likelihood

(I - H) Y|9—1 ~ Nn((l - H)X_19_1, In)'

© Sample (07,0-1) independently and compute VB draw
01 =07 - > 7ib;.
i>2
Allows to plug-in standard computational tools, e.g. conjugacy,
MCMC (Step 1), coordinate descent (Step 2).



@ Preferable to use heavier tailed slabs for 7.

@ Compare with debiased LASSO methods of Zhang & Zhang
(2014) and Javanmard & Montanari (2014).

o Consider again Gaussian design matrices with correlation p.

(n, p,p) = (100,1000,0.5) (200, 800,0.9)
Method | Cov. Len. MAE Time | Cov. Len. MAE Time
I-SVB 224 0.44 0.39 1.87 0.18 0.71
MF 1.32 052 032|001 028 363 1.06
/7 282 0.65 0.40 1.06 022 0.63
M 301 093 148 | 026 144 169 9.93

@ Generally performs at least as well as frequentist methods.
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Conditions on design matrix

Y = X0 +0Z, X e R™P.

e If p>n, Oy is not generally identifiable.
e e.g. if X#1 = X0, how can the likelihood tell #; and 6, apart?
o If 6y sparse, then ‘local invertibility’ of X T X is enough.
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Conditions on design matrix

Y = X0 +0Z, X e R™P.

e If p>n, Oy is not generally identifiable.
e e.g. if X#1 = X0, how can the likelihood tell #; and 6, apart?
o If 6y sparse, then ‘local invertibility’ of X T X is enough.

Assumption (smallest scaled sparse singular value)

Assume there exists ¢(s) > 0 such that for all s-sparse vectors:
1X8]12 > ¢(s) [ X612,

where | X| = maxigj<p | X;|| is the maximal Euclidean column norm.
@(s) is called the smallest scaled singular value of dimension s.

V

@ For s-sparse vectors:

[X(01 = 62)]2 > o(s) [ X]|[|61 022

@ e.g. orthogonal matrices, i.i.d. random matrices.

Kolyan Ray 20/28



Theoretical guarantees

Let v; = X," X;/n be the (rescaled) correlation.

Theorem (Castillo, L'Huillier, Ray, Travis)

Let 0y € RP be sy-sparse. Assume that

m.<>F<) [vilso\/log p = 0

2<i

(enough sparsity and not too much correlation).

e X satisfies a compatibility condition.
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Theoretical guarantees

Let v; = X," X;/n be the (rescaled) correlation.

Theorem (Castillo, L'Huillier, Ray, Travis)

Let 0y € RP be sy-sparse. Assume that

m.<>F<) [vilso\/log p = 0

2<i

(enough sparsity and not too much correlation).
e X satisfies a compatibility condition.
Then under the VB method,

L(V/n(61-61)) 0 N(0,1)

as n — oo, where 01 is an efficient estimator for 0.

e Conditions broadly similar to Yang (EJS 2019).
@ We need additional conditions for lighter tailed distributions g.
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Idea of the proof:

@ Likelihood factorizes in (67,6-1), so independent priors give
independent posteriors.

@ Use parametric Bernstein-von Mises techniques to get
asymptotic normality of \/n(6] — ;) under the variational
distribution for 67.

© Relate
(61 - 01)|Y = (05 = 07)|Y + (61 - 07)|Y - (61 - 07)

Difference roughly reduces to controlling ||0_1 — 6y 11 to
prevent bias. == use contraction rates for sparse VB
method (Ray & Szabé JASA 2022).
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@ Extends straightforwardly to the multidimensional case where
we are interested in inference on 6y = (61,...,0,)7
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@ Extends straightforwardly to the multidimensional case where
we are interested in inference on 6y = (61,...,0,)7

@ Set

eltk:91:k+A(X17"'7Xk)0—k (: 91+27i9i).

i>2
@ Prior:

01 ~ &, 0_k ~ model selection prior

Kolyan Ray 23/28



@ Extends straightforwardly to the multidimensional case where
we are interested in inference on 6y = (61,...,0,)7

@ Set

eltk:91:k+A(X17"'7Xk)0—k (: 91+27i9i).

i>2
@ Prior:

01 ~ &, 0_k ~ model selection prior

@ Variational approximation:

03., ~ posterior 0_k ~ mean field spike and slab.

Kolyan Ray 23/28



Theorem (Castillo, L'Huillier, Ray, Travis)

Under the analogous k-dimensional conditions to before, the VB
method satisfies

Ok~ Nk (ks (X Xau) ™)

as n — oo, where 0. is an efficient estimator for 07.y.
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Theorem (Castillo, L'Huillier, Ray, Travis)

Under the analogous k-dimensional conditions to before, the VB
method satisfies

01k ~° Ny (él:ka (X17:_kX1:k)_1)

as n — oo, where 0. is an efficient estimator for 07.y.

o Motivates using
for O1.x:

C, = {v eRF: (v- 91:,()7—?{3(@ - 91:;() < Xi(a)}

with X («) the a-quantile of the  distribution, 61, the
posterior mean and X 1., the posterior covariance.
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Consider estimating 012 = (01, 02) (k = 2) for increasing covariate
correlation p.

49 49
48 48
3-
49 5.0 5.1 52 53 49 5.0 51 52 53 4.0 45 5.0 55 6.0
B
Method 1-svB M > MF % Oracle Truth

Our method seems to be close to the ‘oracle’ OLS based on
regressing Y = Xs,0s, + Z if you knew the true low-dimensional
support of 6y (note: not a valid method!).
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B2

@ One can think of the difference 3., — $1:2 as the ‘debiasing’
quantity.
@ Plot its covariance contours under the VB posterior:

0 05 095
08-
04~
" Q
-0.4
-0.8+ ' ' ' o ' ' ' o . . \ .
-0.6 -03 00 03 06 -0.6 -03 00 03 06 -0.6 -03 00 0.3 0.6
By
Covariance Matrix B — B’ — oOracle Debiasing Quantity
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B2

@ One can think of the difference 3., — $1:2 as the ‘debiasing’
quantity.
@ Plot its covariance contours under the VB posterior:

0 05 0.95

- O

0.8+, ' ' ' ' ' ' ' ' ' ' ' ' ' '
-0.6 -0.3 0.0 03 0.6 -0.6 -0.3 0.0 03 0.6 -0.6 -0.3 0.0 03 0.6

By

Covariance Matrix B — B’ — oOracle Debiasing Quantity

@ Does more than just counteract variance underestimate of MF
VB: does a covariance correction.
@ Seems to outperform frequentist methods in practice.
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@ Compare with debiased LASSO method of Javanmard &
Montanari (2014) for estimating

o Consider again Gaussian design matrices with correlation p,
n =200, p =400, so = 10.

p=0 p=0.5
Cov. Rel. Vol. [%error | Cov. Rel. Vol. [%-error
I-SVB | 0.96 1.01 0.09 0.97 1.51 0.13
MF | 0.95 0.95 0.09 0.79 0.53 0.13
JM | 0.95 1.84 0.11 0.74 2.98 0.34
Oracle | 0.95 1.00 0.10 0.95 1.00 0.13

@ Competitive in terms of computational time.

@ Can be a bit conservative in highly correlated settings.
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@ Proposed a variational Bayes approach to estimating one (or
several) coordinates in high-dimensional linear regression.

o lIdea: use a factorization that decorrelates the functional of
interest from high-dimensional nuisance parameter.

@ Can be thought of as choosing a variational family tailored for
the specific functional 6;.
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@ Proposed a variational Bayes approach to estimating one (or
several) coordinates in high-dimensional linear regression.

o lIdea: use a factorization that decorrelates the functional of
interest from high-dimensional nuisance parameter.

@ Can be thought of as choosing a variational family tailored for
the specific functional 6;.

@ Gives accurate and fast performance, which is competitive
with the debiased LASSO in practice.

@ Heavier tailed slabs perform best, e.g. improper priors.

@ Semiparametric Bernstein-von Mises theorem justifies this
procedure from a frequentist perspective.
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