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Sparsity

Often have many variables, but only a few are relevant, e.g.
finding subsets of genes responsible for a disease.

Can model this via sparsity.

Consider high-dimensional linear regression

Y = Xθ0 + σZ , Z ∼ Nn(0, In),

where X ∈ Rn×p, θ0 ∈ Rp and σ > 0.
We assume θ0 is s0-sparse:

s0 =#{i ∶ θi ≠ 0}.

Interested in the case p ≫ n and s0 ≪ p.
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Debiased inference

Y = Xθ0 + σZ , Z ∼ Nn(0, In),

Goal: statistical inference for a single or few coordinates
θ1∶k = (θ1, . . . , θk)T of θ = (θ1, . . . , θp)T ∈ Rp.

The LASSO

θ̂LASSO = argmin
θ∈Rp

∥Y −Xθ∥22 + λ∥θ∥1

is well-known to give biased inference for θ1.

Reason: it shrinks all coefficients to perform regularization.
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Debiased inference

Y = Xθ0 + σZ , Z ∼ Nn(0, In),

Can debias the LASSO:

θ̂d = θ̂LASSO + 1

n
MXT (Y −X θ̂LASSO).

Last term is estimate of bias.

If M is sufficiently close to precision matrix of the covariates
and s0 ≪

√
n/(log p) then

θ̂d1 ≈d N(θ1, σ2/n)
e.g. Zhang & Zhang (JRSSB 2014), van de Geer et al. (AOS
2014), Javanmard & Montanari (AOS 2018).

Can be used to construct confidence intervals

Pθ0(θ0,1 ∈ J1(α)) ≥ 1 − α − o(1).
Can we do this in a scalable Bayesian way?
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Model selection priors

Y = Xθ0 + σZ , Z ∼ Nn(0, In)

For the Bayesian: natural to model sparsity via the prior Π.

Common priors:

Model selection priors
Shrinkage priors

Consider the spike and slab prior:

θi ∼iid wφ + (1 −w)δ0

for w ∈ [0,1] and a density φ.

We take Laplace slab φ(x) = λ
2 e
−λ∣x ∣ and hyperprior

w ∼ Beta(a0,b0)

to adapt to the unknown sparsity level s0.

Kolyan Ray 5 / 28



Model selection priors

Y = Xθ0 + σZ , Z ∼ Nn(0, In)

For the Bayesian: natural to model sparsity via the prior Π.

Common priors:

Model selection priors
Shrinkage priors

Consider the spike and slab prior:

θi ∼iid wφ + (1 −w)δ0

for w ∈ [0,1] and a density φ.

We take Laplace slab φ(x) = λ
2 e
−λ∣x ∣ and hyperprior

w ∼ Beta(a0,b0)

to adapt to the unknown sparsity level s0.

Kolyan Ray 5 / 28



Model selection priors

Y = Xθ0 + σZ , Z ∼ Nn(0, In)

For the Bayesian: natural to model sparsity via the prior Π.

Common priors:

Model selection priors
Shrinkage priors

Consider the spike and slab prior:

θi ∼iid wφ + (1 −w)δ0

for w ∈ [0,1] and a density φ.

We take Laplace slab φ(x) = λ
2 e
−λ∣x ∣ and hyperprior

w ∼ Beta(a0,b0)

to adapt to the unknown sparsity level s0.

Kolyan Ray 5 / 28



Model selection priors

Spike and slab: e.g.

θi ∼iid 0.3 ×N(0, σ2
large) + 0.7 ×N(0, σ2

small).
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Recall: goal is to estimate single coordinate θ1.

In high-dimensions the marginal posterior can pick up
regularization bias Ô⇒ bad UQ.

Similar issues occur with “plug-in” estimators, e.g. double
debiased machine learning methods (Chernozhukov et al.).
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A strong form of limit distribution is the (parametric)
Bernstein-von Mises theorem. If Y1, . . . ,Yn ∼iid Pθ0 , then

θ∣Y1, . . . ,Yn ≈d N (θ̂n,
1

n
I−1θ0 )

as n →∞, with θ̂n an efficient estimator and Iθ0 is the Fisher
information.

Says posterior is asymptotically optimal from a frequentist
perspective.

Bayesian credible sets are frequentist confidence sets of
optimal size.

For sparse priors, can get posterior normality for entire θ
under strong signal-to-noise conditions (Castillo et al. AOS
2015), e.g. strong model selection.
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Let γi = XT
1 Xi/n be the (rescaled) correlation.

Let θ have a model selection (e.g. spike and slab) prior with
θ1 only slab.

Theorem (Castillo, van der Pas, Ray, van der Vaart & Vuursteen
(in preparation))

Let θ0 ∈ Rp be s0-sparse. Assume that

max2≤i≤p ∣γi ∣ ≤ c
√
(log p)/n (not too much correlation).

X satisfies a compatibility condition.

s0 = o(
√
n/ log p).

Then the posterior distribution for θ1 satisfies

L(
√
n(θ1 − θ̂1)∣Y ) →Pθ0 N(0,1)

as n →∞, where θ̂1 is an efficient estimator for θ1.
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The condition

max
2≤i≤p

∣X
T
1 Xi

n
∣ ≤ c
√

log p

n

ensures there is not too much correlation between X1 and Xi .

Model selection priors satisfy a semiparametric BvM for θ1
under significantly weaker conditions.

Set

S0 ∶= {i > 1 ∶ ∣θ0i ∣ ≳
s0
√
log p√
n
}

to be the large coordinates (easy to detect).

We allow large correlation between θ1 and S0, and need

max
j∈Sc0
∣(X1 −XS0 β̂S0)TXj

n
∣ ≤ c
√

log p

n

where β̂S0 is the least square estimator for X1 = XS0βS0 + ϵ.
Suggests true Bayesian methods may already be quite good at
debiasing.

Problem: posterior is expensive to compute.
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Computation

Using Bayes formula:

Π(B ∣Y ) = ∫B
e−

1
2
∥Y−Xθ∥22dΠ(θ)

∫Rp e
− 1

2
∥Y−Xθ∥22dΠ(θ)

.

Problem: full posterior is expensive to compute since model
space has size O(2p).
Standard MCMC methods are slow for p large (1000’s).

Discrete structure & high-dimensional multi-modal posterior
Ô⇒ difficult mixing.

Alternative: in variational Bayes (VB), propose a family of
tractable distributions Q for θ.

Solve the following optimization problem:

Q∗ = argmin
Q∈Q

KL(Q ∣∣Π(⋅∣Y )), KL(q∣∣p) = ∫ q log
q

p
.

e.g. using gradient descent, coordinate descent.
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Variational Bayes

Tradeoff: simple vs complex class ⇐⇒ speed vs accuracy.

Typically much faster than standard MCMC methods.

Kolyan Ray 12 / 28



Variational Bayes

Common choice is mean-field (factorizable) distributions:

Q(θ) = Q1(θ1) ⊗ ⋅ ⋅ ⋅ ⊗Qp(θp)

Underestimates posterior variance/uncertainty:

Figure: Figure 1 from Blei et al. (JASA 2017).

Cause: correlation in posterior.

One solution: use approximation that is ‘mean-field’ in a
transformed space that decorrelates parameter of interest θ1.
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Variational Bayes for sparsity

Want a family that preserves properties of spike and slab.

Pick mean-field (factorizable) variational family Q:

θi ∼ind γiN(µi , σ
2
i ) + (1 − γi)δ0,

µi ∈ R, σ2
i > 0 and γi ∈ [0,1].

Reduces posterior model size from O(2p) to O(p).
Mimic prior not posterior - breaks dependencies.

Can be computed numerically using coordinate descent
(non-convex optimization problem).
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Consider Gaussian design matrices with correlation ρ:
Xi ∼ Np(0,Σ) with

Σjk =
⎧⎪⎪⎨⎪⎪⎩

1 if j = k
ρ if j ≠ k .

ρ MF VB Proposed VB
Coverage Length Error Coverage Length Error

0.00 0.92 0.40 0.01 0.96 0.40 0.01
0.25 0.92 0.39 0.02 0.94 0.45 0.01
0.50 0.80 0.39 0.02 0.97 0.59 0.01
0.90 0.05 0.39 0.73 0.97 1.43 0.01

MF VB gets both bias and variance wrong.

MF VB ignores correlation in credible interval lengths.

Kolyan Ray 15 / 28



Let H = X1X
T
1 /n denote the projection matrix onto span(X1)

and γi = XT
1 Xi/n the covariate correlation.

Intuition: likelihood factorizes (≈ ‘independence’):

eℓn(Y ) ∝ e−
1
2
∥Y−Xθ∥22

∝ e−
1
2
∥HY−X1θ

∗

1 ∥
2
2e−

1
2
∥(I−H)Y−(I−H)X−1θ−1∥22 ,

where

θ∗1 = θ1 +∑
i≥2

γiθi , θ−1 = (θ2, . . . , θp)T .

(θ∗1 , θ−1) less correlated compared to (θ1, θ−1) under the
posterior.

Idea: use a mean-field approximation for (θ∗1 , θ2, . . . , θp) not
(θ1, θ2, . . . , θp).
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To speed up computation, we use the prior introduced by
Yang (EJS 2019) for this problem:

θ∗1 ∼ g , θ−1 ∼ model selection prior

independent, where g is a slab distribution.

True posterior still computationally expensive due to θ−1 part.

We use a mean-field approximation for (θ∗1 , θ−1), not
(θ1, . . . , θp):

θi ∼ind γiN(µi , σ
2
i ) + (1 − γi)δ0, 2 ≤ i ≤ p

θ∗1 ∼ind q

By posterior factorization, the KL minimizing q is simply the
true posterior for θ∗1 .
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eℓn(Y ) ∝ e−
1
2
∥HY−X1θ

∗

1 ∥
2
2e−

1
2
∥(I−H)Y−(I−H)X−1θ−1∥22 ,

Independent priors on (θ∗1 , θ−1) Ô⇒ independent posteriors on
(θ∗1 , θ−1).

1 Compute the true 1d posterior for θ∗1 based on likelihood

HY ∣θ∗1 ∼ Nn(X1θ
∗
1 , In).

2 Compute the MF VB approximation for θ−1 based on
likelihood

(I −H)Y ∣θ−1 ∼ Nn((I −H)X−1θ−1, In).

3 Sample (θ∗1 , θ−1) independently and compute VB draw

θ1 = θ∗1 −∑
i≥2

γiθi .

Allows to plug-in standard computational tools, e.g. conjugacy,
MCMC (Step 1), coordinate descent (Step 2).
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2 Compute the MF VB approximation for θ−1 based on
likelihood

(I −H)Y ∣θ−1 ∼ Nn((I −H)X−1θ−1, In).

3 Sample (θ∗1 , θ−1) independently and compute VB draw

θ1 = θ∗1 −∑
i≥2

γiθi .

Allows to plug-in standard computational tools, e.g. conjugacy,
MCMC (Step 1), coordinate descent (Step 2).
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Preferable to use heavier tailed slabs for θ∗1 .

Compare with debiased LASSO methods of Zhang & Zhang
(2014) and Javanmard & Montanari (2014).

Consider again Gaussian design matrices with correlation ρ.

(n,p, ρ) = (100,1000,0.5) (200,800,0.9)
Method Cov. Len. MAE Time Cov. Len. MAE Time

I-SVB 0.94 2.24 0.44 0.39 1.00 1.87 0.18 0.71
MF 0.71 1.32 0.52 0.32 0.01 0.28 3.63 1.06
ZZ 0.84 2.82 0.65 0.40 0.94 1.06 0.22 0.63
JM 0.84 3.01 0.93 1.48 0.26 1.44 1.69 9.93

Generally performs at least as well as frequentist methods.
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Conditions on design matrix

Y = Xθ0 + σZ , X ∈ Rn×p.

If p > n, θ0 is not generally identifiable.
e.g. if Xθ1 = Xθ2, how can the likelihood tell θ1 and θ2 apart?
If θ0 sparse, then ‘local invertibility’ of XTX is enough.

Assumption (smallest scaled sparse singular value)

Assume there exists ϕ(s) > 0 such that for all s-sparse vectors:

∥Xθ∥2 ≥ ϕ(s)∥X ∥∥θ∥2,

where ∥X ∥ = max1≤j≤p ∥X⋅j∥ is the maximal Euclidean column norm.
ϕ(s) is called the smallest scaled singular value of dimension s.

For s-sparse vectors:

∥X (θ1 − θ2)∥2 ≥ ϕ(s)∥X ∥∥θ1 − θ2∥2.
e.g. orthogonal matrices, i.i.d. random matrices.
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Theoretical guarantees

Let γi = XT
1 Xi/n be the (rescaled) correlation.

Theorem (Castillo, L’Huillier, Ray, Travis)

Let θ0 ∈ Rp be s0-sparse. Assume that

max
2≤i≤p

∣γi ∣s0
√
log p → 0

(enough sparsity and not too much correlation).

X satisfies a compatibility condition.

Then under the VB method,

L(
√
n(θ1 − θ̂1)) →Pθ0 N(0,1)

as n →∞, where θ̂1 is an efficient estimator for θ1.

Conditions broadly similar to Yang (EJS 2019).

We need additional conditions for lighter tailed distributions g .
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Idea of the proof:

1 Likelihood factorizes in (θ∗1 , θ−1), so independent priors give
independent posteriors.

2 Use parametric Bernstein-von Mises techniques to get
asymptotic normality of

√
n(θ∗1 − θ̂∗1) under the variational

distribution for θ∗1 .

3 Relate

(θ1 − θ̂1)∣Y = (θ∗1 − θ̂∗1)∣Y + (θ1 − θ∗1)∣Y − (θ̂1 − θ̂∗1)

Difference roughly reduces to controlling ∥θ−1 − θ0,−1∥1 to
prevent bias. Ô⇒ use contraction rates for sparse VB
method (Ray & Szabó JASA 2022).
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Extends straightforwardly to the multidimensional case where
we are interested in inference on θ1∶k = (θ1, . . . , θk)T .

Set

θ∗1∶k = θ1∶k +A(X1, . . . ,Xk)θ−k (= θ1 +∑
i≥2

γiθi) .

Prior:

θ∗1∶k ∼ g , θ−k ∼ model selection prior

Variational approximation:

θ∗1∶k ∼ posterior θ−k ∼ mean field spike and slab.
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Theorem (Castillo, L’Huillier, Ray, Travis)

Under the analogous k-dimensional conditions to before, the VB
method satisfies

θ1∶k ≈d Nk (θ̂1∶k , (XT
1∶kX1∶k)−1)

as n →∞, where θ̂1∶k is an efficient estimator for θ1∶k .

Motivates using approximate k-dimensional VB credible set
for θ1∶k :

Cα = {v ∈ Rk ∶ (v − θ̂1∶k)T Σ̂−11∶k(v − θ̂1∶k) ≤ χ2
k(α)}

with χ2
k(α) the α-quantile of the χ2

k distribution, θ̂1∶k the

posterior mean and Σ̂1∶k the posterior covariance.
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Consider estimating θ1∶2 = (θ1, θ2) (k = 2) for increasing covariate
correlation ρ.
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Our method seems to be close to the ‘oracle’ OLS based on
regressing Y = XS0θS0 + Z if you knew the true low-dimensional
support of θ0 (note: not a valid method!).
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One can think of the difference β∗1∶2 − β1∶2 as the ‘debiasing’
quantity.

Plot its covariance contours under the VB posterior:
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Does more than just counteract variance underestimate of MF
VB: does a covariance correction.

Seems to outperform frequentist methods in practice.
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Compare with debiased LASSO method of Javanmard &
Montanari (2014) for estimating θ1∶2 = (θ1, θ2)T .
Consider again Gaussian design matrices with correlation ρ,
n = 200, p = 400, s0 = 10.

ρ = 0 ρ = 0.5
Cov. Rel. Vol. L2-error Cov. Rel. Vol. L2-error

I-SVB 0.96 1.01 0.09 0.97 1.51 0.13
MF 0.95 0.95 0.09 0.79 0.53 0.13
JM 0.95 1.84 0.11 0.74 2.98 0.34

Oracle 0.95 1.00 0.10 0.95 1.00 0.13

Competitive in terms of computational time.

Can be a bit conservative in highly correlated settings.
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Summary

Proposed a variational Bayes approach to estimating one (or
several) coordinates in high-dimensional linear regression.

Idea: use a factorization that decorrelates the functional of
interest from high-dimensional nuisance parameter.

Can be thought of as choosing a variational family tailored for
the specific functional θ1.

Gives accurate and fast performance, which is competitive
with the debiased LASSO in practice.

Heavier tailed slabs perform best, e.g. improper priors.

Semiparametric Bernstein-von Mises theorem justifies this
procedure from a frequentist perspective.
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